Linear Algebra I

27/02/2014, Thursday, 18:30-21:30

You are NOT allowed to use any type of calculators.
$1(12+3=15 \mathrm{pts})$
Linear equations

Consider the linear equation

$$
\left[\begin{array}{rrrr}
1 & 3 & 5 & -2 \\
1 & 4 & 6 & -2 \\
-1 & -1 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
b-2 a
\end{array}\right]
$$

where a and b are real numbers.
(a) Find all values of a and b for which the equation is consistent. For these values find the general solution of the equation.
(b) Find all values of a and b for which the equation has a unique solution.
$2(7+8=15 \mathrm{pts})$
Partitioned matrices and matrix inverse

Let

$$
M=\left[\begin{array}{cc}
A & B \\
C & I
\end{array}\right]
$$

where all four blocks are $n \times n$ matrices.
(a) Show that M is nonsingular if and only if $A-B C$ is nonsingular.
(b) Let $D=A-B C$. Suppose that D is nonsingular. Show that

$$
M^{-1}=\left[\begin{array}{cc}
D^{-1} & -D^{-1} B \\
-C D^{-1} & I+C D^{-1} B
\end{array}\right]
$$

$3(5+5+5=15 \mathrm{pts})$

Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times r}$, and $C=A B$. Show that
(a) the column space of C is a subspace of the column space of A.
(b) the row space of C is a subspace of the row space of B.
(c) $\operatorname{rank}(C) \leqslant \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

Consider the vector space of $k \times k$ matrices, i.e. $\mathbb{R}^{k \times k}$.
(a) Let $\lambda \in \mathbb{R}$ and

$$
V_{\lambda}=\left\{A \in \mathbb{R}^{k \times k} \mid \lambda \text { is an eigenvalue of } A\right\} .
$$

Show that V_{λ} is not a subspace of $\mathbb{R}^{k \times k}$.
(b) Let $x \in \mathbb{R}^{k}$ be a nonzero vector and

$$
V_{x}=\left\{A \in \mathbb{R}^{k \times k} \mid x \text { is an eigenvector of } A\right\}
$$

Show that V_{x} is a subspace of $\mathbb{R}^{k \times k}$.
$5(2+2+4+6+6=20 \mathrm{pts}) \quad$ Determinants, eigenvalues, and diagonalization

Consider the matrix

$$
M=\left[\begin{array}{rrr}
0 & -2 & 1 \\
1 & 3 & -1 \\
0 & 0 & \alpha
\end{array}\right]
$$

where α is a real number.
(a) Find the determinant of M.
(b) Find all values of α for which M is nonsingular.
(c) Find the eigenvalues of M. [Hint: α is an eigenvalue.]
(d) Find all values of α for which M is diagonalizable.
(e) Let $\alpha=1$. Find a nonsingular matrix T and a diagonal matrix D such that $M=T D T^{-1}$.

Let x_{i} and y_{i} be real numbers with $i=1,2, \ldots, n$. Suppose that

$$
x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n}=0
$$

Show that the least squares solution of

$$
\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

is given by

$$
a=\frac{x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}}{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \quad \text { and } \quad b=0
$$

